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Abstract—The enantiospecific preparation of two novel C10-S(II)- and C10-Se(II)-substituted camphor derivatives (arylsulfide and
arylselenide) from readily available camphor is described. The established three-step route constitutes a model procedure for the
straightforward preparation of interesting enantiopure C10-S- and C10-Se-substituted camphor-derived chiral sources. The
key-step of the described route is an enantiospecific Wagner–Meerwein rearrangement of 3,3-dimethyl-2-methylenenorbornan-1-ol
6 under electrophilic treatment with an arylsulfenyl (or arylselenyl) chloride. © 2001 Elsevier Science Ltd. All rights reserved.

Enantiopure C10-S-substituted camphor derivatives are
an important class of chiral sources, which have been
widely used as chiral reagents (e.g. Davies’ oxaziridine),
chiral auxiliaries (e.g. Oppolzer’s sultame), chiral
resolving agents (e.g. 10-camphorsulfonic acid) and chi-
ral catalysts (e.g. Yus’ sulfonamides) for asymmetric
synthesis, as well as chiral synthetic intermediates for
the preparation of high-value molecules (e.g. in the
total synthesis of the natural product taxol).1 Most of
the described C10-S-substituted camphor derivatives
are of the type C10-S(VI), due to the fact that they can
be easily obtained by transfunctionalization of commer-
cially available 10-camphorsulfonic acid (or 10-cam-
phorsulfonyl halide).1 Nevertheless some interesting
C10-S(II)- and C10-S(IV)-substituted camphor deriva-
tives (generally sulfides and sulfoxides), and also corres-
ponding chalcogenic analogous of the type C10-Se(II)
and C10-Se(IV), have been obtained and probed as
valuable chirality transfer agents (e.g. derivatives 1–4 in
Fig. 1).2

In this sense camphor derived sulfides and selenides of
type 5 (Fig. 1) are key intermediates (together with
commercial 10-sulfanylisoborneol) to other interesting
C10-S(II)- and C10-S(IV)-substituted camphor deriva-
tives (e.g. via stereoselective camphor C2-functionaliza-

tion, m-CPBA S(II)-to-S(IV)-oxidation, etc.).3

Unfortunately, this kind of ketosulfides and keto-
selenides are usually difficult to prepare (specially aryl-
sulfides and arylselenides), and their syntheses have low
overall yields.4

On the other hand, we have recently reported that the
reaction of 3,3-dimethyl-2-methylenenorbornan-1-ol 6

Figure 1. Some interesting C10-S- and C10-Se-substituted
camphor derivatives.* Corresponding authors.
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Scheme 1. Tandem electrophilic carbon�carbon double-bond addition – Wagner–Meerwein rearrangement in 6.

Scheme 2. Preparation of enantiopure 10 and 11: A novel straightforward camphor-based route to C10-S- and C10-Se-substituted
camphor-derived sulfides and selenides.

with N-bromosuccinimide or m-CPBA, as electrophilic
reagents (E+=Br+ or OH+), takes place with a regio-
and enantiospecific tandem of electrophilic car-
bon�carbon double-bond addition – Wagner–Meerwein
rearrangement, to give straightforwardly the corres-
ponding 10-bromocamphor (7, E=Br) and 10-hydroxy-
camphor (7, E=OH) (Scheme 1).5 Key 2-methylenenor-
bornane 6 is enantiospecifically obtained from camphor
in only two easy steps with 90% overall yield.5,6

As a result of this, we have now found that the treat-
ment of (1R)-3,3-dimethyl-2-methylenenorbornan-1-ol
6, obtained from natural (1R)-camphor, with the com-
mercial electrophilic sulfanylating and selanylating
reagents (4-nitrophenyl)sulfenyl chloride 8 and
phenylselenyl chloride 9, enantiospecifically yields cor-
responding (1S)-10-[(4-nitrophenyl)sulfanyl]camphor 10
or (1S)-10-(phenylselanyl)camphor 11 as the only cam-
phor-derived products (Scheme 2).

The reactions take place under mild conditions (methyl-
ene dichloride solution at room temperature) and with
good yields (70–82%),7 according to the mechanism
described in Scheme 1.

In conclusion, a new enantiospecific route to interesting
C10-substituted camphor-derived sulfides and selenides
has been established. The synthetic procedure takes
place straightforwardly in only three easy individual
synthetic steps. The key-step is the reaction of enantio-
pure 3,3-dimethyl-2-methylenenorbornan-1-ol with sul-
fenyl (or selenyl) halides, which takes place with a
regio- and enantiospecific tandem of electrophilic car-
bon�carbon double-bond addition – Wagner–Meerwein
rearrangement. The easy access to 10-(aryl-
selanyl)camphors of the type of 11 opens the way for
the preparation of novel interesting �-hydroxyselen-
oxides analogous to 3 (see Fig. 1), which could be used
as a good chiral reagents for the asymmetric protona-
tion of enolates.2d
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Org. Chem. 1998, 63, 7037; concerning to the asymmetric
reduction of ketones: (h) Fiaud, J.-C.; Mazé, F.; Kagan,
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